236 research outputs found

    Additive effect of LRP8/APOER2 R952Q variant to APOE ε2/ε3/ε4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study

    Get PDF
    BACKGROUND: The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) epsilon2/epsilon3/epsilon4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI. METHODS: In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE epsilon2/epsilon3/epsilon4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI). RESULTS: Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels +/- SD = RR: 0.045 +/- 0.020, RQ: 0.044 +/- 0.014, QQ: 0.040 +/- 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 +/- 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 +/- 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95\%CI 1.08-13.9 as compared with RR/non-carriers E4). CONCLUSION: Our data suggest that LRP8 R952Q variant may have an additive effect to APOE epsilon2/epsilon3/epsilon4 genotype in determining ApoE concentrations and risk of MI in an Italian population

    Novel loci and pathways significantly associated with longevity

    Get PDF
    Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10(−5)). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity
    corecore